Estimating the joint distribution of independent categorical variables via model selection
نویسندگان
چکیده
منابع مشابه
Estimating the joint distribution of independent categorical variables via model selection
C. DUROT, E. LEBARBIER and A.-S. TOCQUET Laboratoire de mathématiques, Bât 425, Université Paris Sud, 91405 Orsay Cedex, France. E-mail: [email protected] Département MMIP, 16 rue Claude Bernard, 75231 Paris Cedex 05, France. E-mail: [email protected] Laboratoire Statistique et Génome, 523 place des Terrasses de l’Agora, F-91000 Evry, France. E-mail: anne-sophie.tocque...
متن کاملAsymptotic Properties of the Joint Neighborhood Selection Method for Estimating Categorical Markov Networks
The joint neighborhood selection method was proposed as a fast algorithm to estimate parameters of a Markov network for binary variables and identify the underlying graphical model. This paper shows that this method leads to consistent parameter estimation and model selection under high-dimensional asymptotics. We also apply the algorithm to the voting records of US senators to illustrate the k...
متن کاملNew Filter method for categorical variables’ selection
It is worth noting that the variable-selection process has become an increasingly exciting challenge, given the dramatic increase in the size of databases and the number of variables to be explored and modelized. Therefore, several strategies and methods have been developed with the aim of selecting the minimum number of variables while preserving as much information for the interest variable o...
متن کاملEstimating Sums of Independent Random Variables
The paper deals with a problem proposed by Uriel Feige in 2005: if X1, . . . , Xn is a set of independent nonnegative random variables with expectations equal to 1, is it true that P ( ∑n i=1 Xi < n + 1) > 1 e ? He proved that P ( ∑n i=1Xi < n + 1) > 1 13 . In this paper we prove that infimum of the P ( ∑n i=1Xi < n + 1) can be achieved when all random variables have only two possible values, a...
متن کاملJoint p.d.f. and Independent Random Variables
♣ Let X and Y be two discrete r.v.'s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f (x, y) = P (X = x, Y = y), has the following properties: (a) 0 ≤ f (x, y) ≤ 1, f (x, y) ≥ 0 for − ∞ < x, y < ∞. ∞ −∞ ∞ −∞ f (x, y)dxdy = 1. y f (x, y) (∞ −∞ f (x, y)dy), x ∈ R x. ♣ The marginal p.d.f. of Y is defined as f Y (y) = x f (x, y) (∞ −∞ f (x, y)dx), y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2009
ISSN: 1350-7265
DOI: 10.3150/08-bej155